Skip to main content

๐Ÿงพ Study Status Template


๐Ÿ“ Overviewโ€‹

Study:

Category:

Core Question:

Primary Input:
SMA (starting baseline)

Status:
in-progress / validated / deprecated / experimental


๐Ÿงช Current Progressโ€‹

PhaseDescriptionStatus
Study designConceptual and mathematical definition completeโœ…
ImplementationFunctions and tests in QLIRโณ
ValidationEmpirical verification against reference dataโณ
VisualizationDistributions or plots generatedโณ
DocumentationMarkdown and supporting notes completeโœ…

๐Ÿงญ Notes & Observationsโ€‹


๐Ÿงฎ Data & Methodology Detailsโ€‹

ParameterDescriptionValue / Notes
TimeframeBase candle frequencye.g. 1min
HorizonLookahead window(s)e.g. 1โ€“5 bars
ConditionsConditional subsets appliede.g. RSI > 70, UTC 09:00โ€“10:00
FeaturesDerived columns or metricse.g. slope_persist_prob, slope_decay_rate

๐Ÿงฉ Reminder: all distributions should follow the same event-based structure used in the global/conditional studies.


๐Ÿ“Š Outputsโ€‹

Output TypeLocation / LinkDescription
Distribution Plot(link or relative path)Conditional likelihood visualization
Tableau Export(if available)Dashboard version of slope metrics
Raw Data Export(CSV path)Direct study output for validation
QLIR Notebook(relative path)Experiment notebook or Python script

๐Ÿ–ผ๏ธ Placeholder: Visualization Reference
Visual: screenshot or description of primary output figure.


๐Ÿงฉ Integration & Dependenciesโ€‹

  • Depends on: slope_utils.py, rolling_window.py, timefreq.py
  • Feeds into: feature_engineering/slope_features.md, distributions/global_conditional_analysis.md
  • Relevant Framework: Conditional vs. Non-Conditional Studies, Event List Schema

๐Ÿง  Next Stepsโ€‹

  1. Validate study on multiple timeframes (1m, 3m, 5m).
  2. Run conditional tests (e.g., ATR high vs. low volatility).
  3. Compare persistence vs. rate-of-change alignment.
  4. Prepare Tableau/Matplotlib comparative overlays.
  5. Decide on which distributions to promote to feature engineering.